
SYBEX Sample Chapter

VBA Developer's Handbook

Ken Getz
Mike Gilbert

Chapter 8: Creating Dynamic Data Structures Using
Class Modules

Copyright © 2001 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this publication
may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy, photograph,
magnetic or other record, without the prior agreement and written permission of the publisher.

ISBN: 0-7821-2978-1

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the USA and other countries.

TRADEMARKS: Sybex has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by following
the capitalization style used by the manufacturer. Copyrights and trademarks of all products and services listed or described herein
are property of their respective owners and companies. All rules and laws pertaining to said copyrights and trademarks are inferred.

This document may contain images, text, trademarks, logos, and/or other material owned by third parties. All rights reserved. Such
material may not be copied, distributed, transmitted, or stored without the express, prior, written consent of the owner.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufacturers. The
author and the publisher make no representation or warranties of any kind with regard to the completeness or accuracy of the
contents herein and accept no liability of any kind including but not limited to performance, merchantability, fitness for any particular
purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly from this book.

c h a p t e r 8

Creating Dynamic Data
Structures Using Class
Modules

� Using class modules to implement abstract data
structures

� Emulating a stack

� Emulating a queue

� Creating and using ordered linked lists

� Creating and using binary trees

Chapter 8 • Creating Dynamic Data Structures Using Class Modules432

Almost any application requires that you maintain some data storage in mem-
ory. As your application runs, you read and write data in some sort of data struc-
ture, and when your application shuts down, it either discards the data structure
(and its data) or writes the data to some persistent storage.

VBA provides two built-in data structures: arrays and collections. Each has its
good and bad points, and there are compelling reasons to use each of these struc-
tures. (For more information on using arrays and collections, see Chapter 7.) On
the other hand, if you’ve previously programmed in other languages or have
studied data structures in a college course, you may find the need to use abstract
data structures, such as linked lists, binary trees, stacks, and queues, as part of
your applications. Although all these structures can be implemented using arrays
or collections, neither of those constructs is well suited for linked data structures.

This chapter introduces techniques for using class modules to construct abstract
data structures. Amazingly, VBA requires very little code to create these some-
what complex structures. Once you’ve worked through the examples in this chap-
ter, you’ll be able to exploit the power of linked lists, stacks, queues, and binary
trees in your own VBA applications. Table 8.1 lists the sample files you’ll find on
the accompanying CD-ROM.

T A B L E 8 . 1 : Sample Files

Filename Description

DYNAMIC.XLS Excel file with sample modules and classes

DYNAMIC.MDB Access 2000 file with sample modules and classes

DYNAMIC.VBP VB6 project with sample modules and classes

LISTTEST.BAS Test routines for List class

QUEUETEST.BAS Test routines for Queue class

STACKTEST.BAS Test routines for Stack class

TREETEST.BAS Test routines for Tree class

LIST.CLS Linked List class

LISTITEM.CLS ListItem class

QUEUE.CLS Queue class

QUEUEITEM.CLS QueueItem class

 Dynamic versus Static Data Structures 433

Dynamic versus Static Data Structures
VBA provides a simple data structure: the array. If you know how many elements
you’re going to need to store, arrays may suit you fine. On the other hand, arrays
present some difficulties:

They are linear only. You cannot overlay any kinds of relationships
between the elements of an array without going through a lot of work.

They’re essentially fixed size. Yes, you can ReDim (Preserve) to resize
the array, but all VBA does in that case is create a new data structure large
enough for the new array and copy all the elements over, one by one. This isn’t a
reasonable thing to do often, or for large arrays.

They often use too much space. No matter how many elements you’re
going to put into the array, you must pre-declare the size. It’s just like the pre-
payment rip-off the car rental companies provide—you pay for a full tank,
regardless of whether you actually use it. The same goes for arrays: If you
dimension the array to hold 50 elements and you store only 5, you’re wasting
space for the other 45.

Because of these limitations, arrays are normally referred to as static data structures.

On the other hand, a dynamic data structure is one that can grow or shrink as
needed to contain the data you want stored. That is, you can allocate new storage
when it’s needed and discard that storage when you’re done with it.

Dynamic data structures generally consist of at least some simple data storage
(in our case, it will be a class module), along with a link to the next element in the
structure. These links are often called pointers or references. You’ll see both terms
used here.

STACK.CLS Stack class

STACKITEM.CLS StackItem class

TREE.CLS Tree class

TREEITEM.CLS TreeItem class

MAIN.FRM Start-up form for VB project

T A B L E 8 . 1 : Sample Files (continued)

Filename Description

Chapter 8 • Creating Dynamic Data Structures Using Class Modules434

The study of dynamic data structures could be a full-semester college course on
its own, so we can’t delve too deeply into it in this limited space. However, we do
introduce the basic concepts and show how you can use class modules to create
your own dynamic data structures. In addition, we suggest some ways in which
you might use these data structures in your own applications.

Simple Dynamic Structures
Linear structures are the simplest class of dynamic data structures. Each element
of structures of this type contains some information and a pointer to the next ele-
ment. The diagram in Figure 8.1 shows a simple data structure in which each element
of the structure contains a piece of data and a reference to the next item in the
structure. (This structure is normally called a linked list because it contains a list of
items that are linked together.)

F I G U R E 8 . 1
The simplest type of

dynamic data structure

What differentiates one instance of this kind of data structure from another? It’s
just the arbitrary rules about how you can add or delete nodes. For example, stacks
and queues are both types of linear linked data structures, but a stack can accept
new items only at its “top,” and a queue can accept new items only at its “bot-
tom.” With a stack, you can retrieve items only from the same place you added
them. But with a queue, you retrieve them from the other end of the structure.
This chapter discusses creating both of these simple data structures with VBA
class modules.

If you need to be able to traverse your structure in both directions, you can, of
course, include links in both directions. Although we won’t handle this additional
step in this chapter, it takes very little extra work to provide links in both directions.
You’ll find this extra pointer useful when you must traverse a list in either direction.

Recursive Dynamic Structures
You’ll normally use iterative code to loop through the elements of a simple, linear
dynamic data structure. On the other hand, many popular dynamic data structures

 How Does This Apply to VBA? 435

lend themselves to being traversed recursively. For example, programmers often
use the ordered binary tree structure for data storage and quick retrieval. In this
kind of structure, each node has one predecessor and two successors. (Normally,
you think of one successor as being the “left child” and the other as the “right
child.”) Figure 8.2 shows the simplest recursive data structure: a binary tree. The
tree data structure is well suited to recursive algorithms for adding items and tra-
versing the nodes.

F I G U R E 8 . 2
Ordered binary trees are an
example of a recursive data

structure.

The term dynamic data structures always refers to in-memory data structures. All
the techniques covered in this chapter deal only with data that you work with in the
current instance of your application and have nothing to do with storing or
retrieving that data from permanent storage. VBA provides its own techniques for
reading and writing disk files. You’ll use the data structures presented in this chapter
once you’ve retrieved the data you need to work with.

How Does This Apply to VBA?
Because VBA supports class modules and because you can create a new instance
of a class (that is, instantiate a new member of the class) at any time, you can create
class modules that emulate these abstract data structures. Each element of the
structure, because it’s just like every other element, is just another instance of the
class. (For information on getting started with class modules, see Chapter 5.)

Chapter 8 • Creating Dynamic Data Structures Using Class Modules436

You can most easily represent abstract structures in VBA using two class mod-
ules: one to represent a data type that does nothing more than point to the real
data structure, and another to represent each element of the structure. For exam-
ple, if you want to create a stack data structure (and you will later in this section),
you’ll need one class module to act as a pointer to the “top” of the stack. This is
where you can add new items to the stack. You’ll also need a different class mod-
ule for the elements in the stack. This class module will contain two pieces of data: the
information to be stored in the stack and a reference to the next item on the stack.

Retrieving a Reference to a New Item
At some point, you’ll need to retrieve a reference to a new instance of your class. If
you want to add a new item to your data structure, you’ll need a pointer to that
new item so you can get back to it later. Of course, Basic (after all, as many folks
will argue, this is still just Basic) has never supported real pointers, and dynamic
data structures require pointers, right? Luckily, not quite!

VBA allows you to instantiate a new element of a class and retrieve a reference to it:

Dim objVar As New className

or

Dim objVar as className

‘ Possibly some other code in here.

Set objVar = New className

You choose one of the two methods for instantiating a new item based on your needs.
In either case, you end up with a variable that refers to a new instance of the class.

Be wary of using the New keyword in the Dim statement. Although this makes your
code shorter, it can also cause trouble. This usage allows VBA to instantiate the new
object whenever it needs to (normally, the first time you attempt to set or retrieve a
property of the object) and, therefore, runs the new object’s Initialize event at that
time. If you want control over exactly when the new object comes into being (and
when its Initialize event procedure runs), use the New keyword with the Set state-
ment. This will instantiate the object when you’re ready to, not at some time when
you might not be expecting it. In addition, using the New keyword as part of the
Dim statement causes VBA to add extra code to your application because it must
check at runtime whether it needs to instantiate the object between each line of
code where the object is in scope. You don’t need this extra overhead.

 How Does This Apply to VBA? 437

After either of these statements, objVar contains a pointer to the new member of
the className class. Even though you can’t manipulate, view, or otherwise work
with pointer values as you can in C/C++, the Set/New combination at least gives
VBA programmers almost the same functionality that Pascal programmers have
always had, although the mechanism is a bit clumsier: You can create pointers
only to classes in VBA, while Pascal allows pointers to almost any data type.

Making an Object Variable Refer to an Existing Item
Just as you can use the Set keyword to retrieve a reference to a new object, you can
use it to retrieve a reference to an existing object. If objItem is an object variable
that refers to an existing member of a class, you can use code like this to make
objNewItem refer to the existing item:

Set objNewItem = objItem

After this statement, the pointers named objNewItem and objItem refer to the
same object.

What If a Variable Doesn’t Refer to Anything?
How can you tell if an object variable doesn’t refer to anything? When working
with dynamic data structures, you’ll find it useful to be able to discern whether a
reference has been instantiated. Pascal uses Nil, C uses Null, and VBA uses Noth-
ing to represent the condition in which an object variable doesn’t currently refer to
a real object.

If you have an object variable and you’ve not yet assigned it to point to an
object, its value is Nothing. You can test for this state using code like this:

If objItem Is Nothing Then
 ' You know that objItem isn’t currently referring to anything
End If

If you want to release the memory used by an object in memory, you must sever
all connections to that object. As long as some variable refers to an object, VBA
won’t be able to release the memory used by that object. (Think of it as a hot-air
balloon tied down with a number of ropes; until someone releases the last rope,
that balloon isn’t going anywhere.) To release the connection, set the object vari-
able to Nothing:

Set objItem = Nothing

Chapter 8 • Creating Dynamic Data Structures Using Class Modules438

Once you’ve released all references to an object, VBA can dispose of the object and
free up the memory it was using.

Emulating Data Structures with Class Modules
Before you can do any work with dynamic data structures, you need to under-
stand how to use class modules to emulate the elements of these structures. For
example, In Figure 8.1, each element of the structure contains a piece of data and a
reference to the next element. How can you create a class module that does that?

It’s easy: Create a class module named ListItem with two module-level variables:

Public Value As Variant
Public NextItem As ListItem

The first variable, Value, will contain the data for each element. The second vari-
able, NextItem, will contain a reference to the next item in the data structure. The
surprising, and somewhat confusing, issue is that you can create a variable of the
same type as the class in the definition of the class itself. It’s just this sort of self-
referential declaration that makes dynamic data structures possible in VBA.

To add an item to the list, you might write code like this in your class module:

Public Function AddItem(varValue As Variant) As ListItem
 Set NextItem = New ListItem
 NextItem.Value = varValue
 ' Set the return value for the function.
 Set AddItem = NextItem
End Sub

The first line of the procedure creates a new item in the data structure and makes
the NextItem variable in the current element refer to that new element. The sec-
ond line uses NextItem to refer to the next element and sets its Value variable to
the value passed to the current procedure, varValue. The final line sets up the
function call to return a reference to the new item that was just added to the list.

In reality, you probably wouldn’t write a data structure this way because it pro-
vides no way to find a particular item or the beginning or end of the list. In other
words, there’s something missing that makes these structures possible: a reference
to the entire structure. The next section tells you how you should actually create
such a data structure.

How about the complicated binary tree structure shown in Figure 8.2? The only dif-
ference between this structure and a linear list is that each element in this structure

 Creating a Stack 439

maintains a pointer to two other structures rather than just one. The class module
for an element (class name TreeItem) of a binary tree structure might contain these
elements:

Public Value As Variant
Public LeftChild As TreeItem
Public RightChild As TreeItem

Creating a Header Class
Although you can use a class module to emulate the elements of a dynamic data
structure, as shown in the previous section, you’ll need a different class module to
“anchor” the data structure. This class module will generally have only a single
instance per data structure and will contain pointers to the beginning, and per-
haps the end, of the data structure. In addition, this class often contains the code
necessary to add and delete items in the list.

Generally, the header class contains one or more references to objects of the type
used in building the data structure, and perhaps other information about the struc-
ture itself. For example, a hypothetical class named ListHeader, with the follow-
ing information, has a reference to the first item in a list and the last item in the list:

Private liFirst As ListItem
Private liLast As ListItem

Note that the class doesn’t contain a self-referential data element. There’s gener-
ally no reason for a list header to refer to another list header, so this example
doesn’t contain a reference to anything but the list items. In addition, the header
class only needs to contain a reference to the first item in the data structure.

How you work with the items in the data structure—adding, deleting, and
manipulating them—depends on the logical properties of the data structure you’re
creating. Now that you’ve seen the basics, it’s time to dig into some data struc-
tures that emulate stacks and queues, each of which has its own ideas about add-
ing and deleting items.

Creating a Stack
A stack is a simple logical data structure, normally implemented using a linked
list to contain its data. Of course, you could use an array to implement a stack, and

Chapter 8 • Creating Dynamic Data Structures Using Class Modules440

many programmers have done this. However, using an array forces you to worry
about the size of the stack, which a linked list structure would not. A stack allows
you to control data input and output in a very orderly fashion: New items can be
added only to the top of the stack. And, as you remove items, they too are removed
from the top. In essence, a stack data structure works like the stack of cafeteria
trays at your local eatery or like the pile of problems to solve on your desk (unless
you’re as compulsive as one of us is—we’re not telling which one—and solve your
problems in a queue-like fashion). This sort of data storage is often referred to as
LIFO (Last In, First Out)—the most recent item added to the stack is the first to be
removed.

Why Use a Stack?
Why use a stack in an application? You might want to track forms as a user opens
them and then be able to back out of the open forms in the opposite order: That is,
you may want to store form references in the stack and then, as the user clicks the
OK button on each form, bring the correct form to the top, popping the most recent
form from the stack. Or you may want to track the procedure call tree within your
application as your user runs it. That way, you could push the name of the proce-
dure as you enter the procedure. On the way out, you could pop the stack. Using
this technique, the top of the stack always contains the name of the current proce-
dure. Otherwise, this value is impossible to retrieve. (Perhaps some day VBA will
allow you to gather information about the internal call stack programmatically. At
this point, you’re left handling it yourself.) You could also build your own appli-
cation profiler. By storing the current time in the stack for each procedure as you
push it on the stack and then subtracting that from the current time as you pop the
stack, you can find out how long the code was working in each procedure.

Implementing a Stack
Figures 8.3 and 8.4 show a sample stack in memory, before and after a fifth item is
added to the stack. At each point, the top of the stack points to the top-most element.
After the new element is added, the top of the stack points at the newest element,
and that element’s link points to the item that used to be at the top of the stack.

It takes very little code to create and maintain a stack. The structure requires
two class modules: the Stack and StackItem classes.

 Creating a Stack 441

F I G U R E 8 . 3
A sample stack just before

adding a fifth item

F I G U R E 8 . 4
The same stack after add-

ing the new item

The StackItem Class
It doesn’t get much simpler than this. The StackItem class maintains a data item,
as well as a pointer to the next item in the structure, as shown in Listing 8.1.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules442

➲ Listing 8.1: Code for the StackItem Class

' Keep track of the next stack item,
' and the value of this item.

Public Value As Variant
Public NextItem As StackItem

The Stack Class

The Stack class contains a single item: a pointer to the first item in the stack (the
stack top). That pointer always points to the top of the stack, and it’s at this loca-
tion that you’ll add (push) and delete (pop) items from the stack. The Stack class
module implements the two methods (Push and Pop), as well as two read-only
properties, StackTop (which returns the value of the element at the top of the stack
without popping the item) and StackEmpty (which returns a Boolean value indi-
cating the status of the stack—True if there are no items in the stack and False if
there are items).

Pushing Items onto the Stack

To add an item to the stack, you “push” it to the top of the stack. This is similar to
pushing a new cafeteria tray to the top of the tray stack. When you push the new
tray, each of the other trays moves down one position in the stack. Using linked
lists, the code must follow these steps:

1. Create the new node.

2. Place the value to be stored in the new node.

3. Make the new node point to whatever the current stack top pointer refers to.

4. Make the stack top point to this new node.

The code in Listing 8.2 shows the Push method of the Stack class. The four lines
of code correspond to the four steps listed previously.

➲ Listing 8.2: Use the Push Method to Add a New Item to the Stack

Public Sub Push(ByVal varText As Variant)
 ' Add a new item to the top of the stack.
 Dim siNewTop As StackItem

 Creating a Stack 443

 Set siNewTop = New StackItem
 siNewTop.Value = varText
 Set siNewTop.NextItem = siTop
 Set siTop = siNewTop
End Sub

Figures 8.5 and 8.6 demonstrate the steps involved in pushing an item onto a
stack. In the example case, you’re attempting to push the value 27 onto a stack that
already contains three elements.

In the figures, to save space, we’ve collapsed the Dim and As New statements into one
line. The examples use separate lines of code for each step, as we’ve recommended
earlier.

F I G U R E 8 . 5
The first three steps in

pushing an item onto a
stack

F I G U R E 8 . 6
The final step in pushing an

item onto a stack

What if the stack is empty when you try to push an item? In that case, siTop will
be Nothing when you execute the following code:

Set siNewTop.NextItem = siTop

Dim siNewTop As New StackItem
siNewTop.Value = varText

Set siNewTop.NextItem = siTop

Chapter 8 • Creating Dynamic Data Structures Using Class Modules444

The new node’s NextItem property will point to Nothing, as it should. Executing
the final line of code:

Set siTop = siNewTop

causes the top of the stack to point to this new node, which then points to Noth-
ing. It works just as it should!

If you find this final line of code confusing, look at it this way: When you assign
siTop to be siNewTop, you’re telling VBA to make siTop contain the same address
that siNewTop currently contains. In other words, you’re telling siTop to point to
whatever siNewTop currently points to. Read that a few times while looking at
Figure 8.6, and, hopefully, it will all come into focus.

Popping Items from the Stack

Popping an item from the stack removes it from the stack and makes the top
pointer refer to the new item on the top of the stack. In addition, in this implemen-
tation, the Pop method returns the value that was just popped.

The code for the Pop method, as shown in Listing 8.3, follows these steps:

1. Makes sure there’s something in the stack. (If not, Pop doesn’t do anything
and returns a null value.)

2. Sets the return value of the function to the value of the top item.

3. Makes the stack top point at whatever the first item is currently pointing to.
This effectively removes the first item in the stack.

➲ Listing 8.3: Use the Pop Method to Remove an Item from the Stack

Public Function Pop() As Variant
 If Not StackEmpty Then
 ' Get the value from the current top stack element.
 ' Then, get a reference to the new stack top.
 Pop = siTop.Value
 Set siTop = siTop.NextItem
 End If
End Function

 Creating a Stack 445

What happens to the node that used to be at the top of the stack? Once there are
no more references to an instance of a class module, VBA can remove that instance
from memory, effectively “killing” it. If you’re not convinced, add a Debug.Print
statement to the Terminate event procedure for the StackItem class. You’ll see that
VBA kills off unneeded objects as soon as there are no more references to the object.

The diagram in Figure 8.7 demonstrates the tricky step: popping an item from the
stack. The code causes the stack pointer, siTop, to refer to the item to which siTop
previously referred. That is, it links around the current top item in the stack. Once
that occurs, there’s no reference to the current top item, and VBA can “kill” the item.

F I G U R E 8 . 7
Link around the top node to
pop an item from the stack.

Is the Stack Empty?

You may need to be able to detect whether the stack is currently empty. To make
that possible, the example implementation of the Stack data structure provides a
read-only StackEmpty property. Providing the information is simple: If siTop is
currently Nothing, the stack must be empty.

Property Get StackEmpty() As Boolean
 ' Is the stack empty? It can
 ' only be empty if siTop is Nothing.
 StackEmpty = (siTop Is Nothing)
End Property

Given this property, you can write code that pops items until the stack is empty,
like this:

Do While Not stk.StackEmpty
 Debug.Print stk.Pop()
Loop

Chapter 8 • Creating Dynamic Data Structures Using Class Modules446

What’s on Top?

You may need to know what’s on the top of the stack without removing the item.
To make that possible, the example implementation of the Stack data structure
includes a read-only StackTop property that returns the value of the item to which
siTop points (or Null if siTop is Nothing):

Property Get StackTop() As Variant
 If StackEmpty Then
 StackTop = Null
 Else
 StackTop = siTop.Value
 End If
End Property

A Simple Example

Listing 8.4 shows a few examples using a stack data structure. The first example
pushes a number of text strings onto a stack and then pops the stack until it’s
empty, printing the text to the Immediate window. The second example calls a
series of procedures, each of which pushes its name onto the stack on the way in
and pops it off on the way out. The screen in Figure 8.8 shows the Immediate win-
dow after running the sample.

➲ Listing 8.4: Using the Stack Data Structure

Private stkTest As Stack

Sub TestStacks()

 Set stkTest = New Stack

 ' Push some items, and then pop them.
 stkTest.Push ""Hello"
 stkTest.Push "There"
 stkTest.Push "How"
 stkTest.Push "Are"
 stkTest.Push "You"
 Do Until stkTest.StackEmpty
 Debug.Print stkTest.Pop()
 Loop

 Creating a Stack 447

 ' Now, call a bunch of procedures.
 ' For each procedure, push the proc name
 ' at the beginning, and pop it on the way out.
 Debug.Print
 Debug.Print "Testing Procs:"
 stkTest.Push "Main"
 Debug.Print stkTest.StackTop
 Call A
 Debug.Print stkTest.Pop
End Sub

Sub A()
 stkTest.Push "A"
 Debug.Print stkTest.StackTop
 Call B
 Debug.Print stkTest.Pop
End Sub

Sub B()
 stkTest.Push "B"
 Debug.Print stkTest.StackTop
 Call C
 Debug.Print stkTest.Pop
End Sub

Sub C()
 stkTest.Push "C"
 Debug.Print stkTest.StackTop
 ' You’d probably do something in here...
 Debug.Print stkTest.Pop
End Sub

As you can see from the previous example, it’s not hard to create a procedure stack,
keeping track of the current procedure from within your code. Unfortunately, you
must take care of the details yourself. If you do implement something like this, make
sure there’s no way to exit a procedure without popping the stack, or your stack will
get awfully confused about the identity of the current procedure as you work your
way back out, popping things from the stack.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules448

F I G U R E 8 . 8
The Immediate window
after the stack example

has run

Creating a Queue
A queue, like a stack, is a data structure based on the linked list concept. Instead of
allowing you to add and remove items at a single point, a queue allows you to add
items at one end and remove them at the other. In essence, this forms a First In
First Out (FIFO) data flow: The first item into the queue is also the first item out.
Of course, this is the way your to-do list ought to work—the oldest item ought to
get handled first. Unfortunately, most people handle their workflow based on the
stack data model, not based on a queue.

Why Use a Queue?
You’ll use a queue data structure in an application when you need to maintain a
list of items ordered not by their actual value but by their temporal value. For
example, you might want to allow users to select a list of reports throughout the
day and, at idle times throughout the day, print those reports. Although there are
many ways to store this information internally, a queue makes an ideal mecha-
nism. When you need to find the name of the next report to print, just pull it from
the top of the queue. When you add a new report to be printed, it goes to the end
of the queue.

 Creating a Queue 449

You can also think of a queue as a pipeline—a means of transport for information
from one place to another. You could create a global variable in your application
to refer to the queue and have various parts of the application send messages to
each other using the queue mechanism, much as Windows itself does with the
various running applications.

If you’re planning on creating an industrial-strength queue in an application to pass
information from one user to another, you’ll want to study the concepts presented
here, but also look into using MSMQ, a server-based product from Microsoft that
manages enterprise-wide queuing for you. In one sense, MSMQ works the same
way as the queues shown here do. However, in a real sense, comparing MSMQ to
the queues shown here is just as accurate as comparing a desktop computer to an
abacus. They both perform calculations, but one is far more powerful than the
other. If you need disconnected queuing and guaranteed delivery of information in
an enterprise-wide environment, you’ll want to look into MSMQ.

Implementing a Queue
The diagrams in Figures 8.9, 8.10, and 8.11 show a simple queue before and after add-
ing a new item and before and after removing an item. At each point, you can add a
new item only at the rear of the queue and can remove an item only from the front of
the queue. (Note that the front of the queue, where you delete items, is at the left of the
diagrams. The rear of the queue, where you add items, appears to the right.)

Maintaining a queue takes a bit more code than maintaining a stack, but not
much. Although the queue is handled internally as a linked list, it has some limita-
tions as to where you can add and delete items. The underlying code handles
these restrictions. The queue structure requires two class modules, one each for
the Queue and QueueItem classes.

F I G U R E 8 . 9
A simple queue just before

a fourth item is added

Chapter 8 • Creating Dynamic Data Structures Using Class Modules450

F I G U R E 8 . 1 0
The simple queue after the

fourth item is added and
before an item is removed

F I G U R E 8 . 1 1
The simple queue after an

item has been removed

The QueueItem Class

Just like the StackItem class, the QueueItem class stores just a data value and a
pointer to the next data element, as shown in Listing 8.5.

➲ Listing 8.5: Code for the QueueItem Class

' Keep track of the next queue item,
' and the text of this item.
Public NextItem As QueueItem
Public Value As Variant

The Queue Class

As with the Stack class, all the interesting code required in working with the data
structure is part of the parent class—in this case, the Queue class. It’s here you’ll
find the methods for adding and removing items in the queue, as well as a read-
only property that indicates whether the queue is currently empty. Because a
queue needs to be able to work with both the front and the rear of the queue, the
Queue class includes two pointers rather than just one, making it possible to add

 Creating a Queue 451

items at one end and to remove them from the other. These pointers are defined as
qFront and qRear, as shown here, and are module-level variables:

Private qFront As QueueItem
Private qRear As QueueItem

Adding an Item to the Queue

To add an item to a queue, you “enqueue” it. That is, you add it to the rear of the
queue. To do this, the Add method follows these steps:

1. Creates the new node.

2. Places the value to be stored in the new node.

3. If the queue is currently empty, makes the front and rear pointers refer to the
new node.

4. Otherwise, links the new node into the list of nodes in the queue. To do that,
it makes the final node (the node the “rear pointer” currently points to)
point to the new item. Then it makes the rear pointer in the queue header
object refer to the new node.

The code in Listing 8.6 shows the Add method of the Queue class.

➲ Listing 8.6: Use the Add Method to Add a New Item to a Queue

Public Sub Add(varNewItem As Variant)
 Dim qNew As QueueItem
 Set qNew = New QueueItem

 qNew.Value = varNewItem
 ' What if the queue is empty? Better point
 ' both the front and rear pointers at the
 ' new item.
 If IsEmpty Then
 Set qFront = qNew
 Set qRear = qNew
 Else
 Set qRear.NextItem = qNew
 Set qRear = qNew
 End If
End Sub

Chapter 8 • Creating Dynamic Data Structures Using Class Modules452

The diagrams in Figures 8.12 and 8.13 demonstrate the steps for adding a new
node to an existing queue.

As we did earlier, we’ve collapsed the Dim and New statements in the figures into
a single line of code in order to save space. We don’t recommend doing this in
your own code.

F I G U R E 8 . 1 2
After you create the new
node, the Add method is
ready to attach it to the

queue.

F I G U R E 8 . 1 3
To finish adding the node,

set qRear to point to the
new node.

What if the queue was empty when you tried to add an item? In that case, all
you need to do is make the head and rear of the queue point to the new node.
Afterward, the queue will look like the one in Figure 8.14.

 Creating a Queue 453

F I G U R E 8 . 1 4
After a new node is added

to an empty queue, both
the head and rear pointers

refer to the same node.

Removing Items from the Queue

Removing an item from the queue both removes the front node from the data
structure and makes the next front-most item the new front of the queue. In addi-
tion, this implementation of the queue data structure returns the value of the
removed item as the return value from the Remove method.

The code for the Remove method, as shown Listing 8.7, follows these steps:

1. Makes sure there’s something in the queue. If not, the Remove method
doesn’t do anything and returns a null value.

2. Sets the return value of the function to the value of the front queue item.

3. If there’s only one item in the queue, sets both the head and rear pointers to
Nothing. There’s nothing left in the queue.

4. If there was more than one item in the queue, sets the front pointer to refer to
the second item in the queue. This effectively kills the old first item.

➲ Listing 8.7: Use the Remove Method to Drop Items from a Queue

Public Function Remove() As Variant
 ' Remove an item from the head of the
 ' list, and return its value.
 If IsEmpty Then
 Remove = Null
 Else
 Remove = qFront.Value
 ' If there’s only one item
 ' in the queue, qFront and qRear
 ' will be pointing to the same node.
 ' Use the Is operator to test for that.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules454

 If qFront Is qRear Then
 Set qFront = Nothing
 Set qRear = Nothing
 Else
 Set qFront = qFront.NextItem
 End If
 End If
End Function

How can you tell when there’s only one item in the queue? The Is operator comes
in handy here. By checking whether “qFront Is qRear”, you can find out whether
the two variables refer to the same object. If the condition is True, they do refer to the
same object, and, therefore, there’s only one item in the queue.

The diagram in Figure 8.15 demonstrates the one difficult step in removing an
item. The diagram corresponds to this line of code:

Set qFront = qFront.NextItem

By moving the front pointer to the item that the first item previously pointed to,
you eliminate the reference to the old first item, and VBA removes it from mem-
ory. After this step, the queue will contain one less item.

F I G U R E 8 . 1 5
To remove an item, move

the front pointer to the sec-
ond node in the queue.

Is the Queue Empty?

You’ll often need to be able to detect whether the queue is empty, and the example
implementation includes the read-only IsEmpty property for this reason. The

 Creating a Queue 455

queue can be empty only if both the front and rear pointers are Nothing. The code
shown here checks for this condition:

Public Property Get IsEmpty() As Boolean
 ' Return True if the queue contains
 ' no items.
 IsEmpty = ((qFront Is Nothing) And (qRear Is Nothing))
End Property

The IsEmpty property allows you to write code like this:

Do Until q.IsEmpty
 Debug.Print q.Remove()
Loop

A Simple Queue Example

The code in Listing 8.8 demonstrates the use of the queue data structure. It creates
a new queue, adds five words to the queue, and then removes the words, one at a
time. The words should come out in the same order in which they were entered.
Note that if you’d used a stack for the same exercise, the words would have come
out in the opposite order from the order in which they were entered.

➲ Listing 8.8: Using the Queue Data Structure

Sub TestQueues()
 Dim qTest As Queue

 Set qTest = New Queue
 With qTest
 .Add "Hello"
 .Add "There"
 .Add "How"
 .Add "Are"
 .Add "You"
 Do Until .IsEmpty
 Debug.Print .Remove()
 Loop
 End With
End Sub

Chapter 8 • Creating Dynamic Data Structures Using Class Modules456

Creating Ordered Linked Lists
A linked list is a simple data structure, as shown earlier in Figure 8.1, that allows
you to maintain an ordered list of items without having to know ahead of time
how many items you’ll be adding. To build this data structure, you need two class
modules: one for the list head and another for the items in the list. The example
presented here is a sorted linked list. As you enter items into the list, the code
finds the correct place to insert them and adjusts the links around the new nodes
accordingly.

The ListItem Class
The code for the ListItem class, shown here, is simple, as you can see in List-
ing 8.9. The code should look familiar—it’s parallel to the code in Listing 8.1.
(Remember, the Stack data structure is just a logical extension of the simple
linked list.)

Public Value As Variant
Public NextItem As ListItem

The class module contains storage for the value to be stored in the node, plus a
pointer to the next node. As you instantiate members of this class, you’ll set the
NextItem property to refer to the next item in the list, which depends on where in
the list you insert the new node.

The List Class
The List class includes but a single data element:

Dim liHead As ListItem

The liHead item provides a reference to the first item in the linked list. (If there’s
nothing yet in the list, liHead is Nothing.) The List class also includes three Public
methods: Add, Delete, and DebugList. The Add method adds a new node to the
list, in sorted order. The Delete method deletes a given value from the list if it’s
currently in the list. The DebugList method walks the list from one end to the
other, printing the items in the list to the Immediate window.

 Creating Ordered Linked Lists 457

Finding an Item in the List

Both the Add and Delete methods count on a Private method, Search, which takes
three parameters:

• The value to find (passed by value)

• The current list item (passed by reference)

• The previous list item (passed by reference)

The Search procedure fills in the current and previous list items (so the calling
procedure can work with both items). Both parameters are passed using ByRef, so
the procedure can modify their values. The function returns a Boolean value indi-
cating whether it actually found the requested value. The function, shown in List-
ing 8.9, follows these steps:

1. Assumes the return value is False, sets liPrevious to point to Nothing, and
sets liCurrent to point to the head of the list:

blnFound = False

Set liPrevious = Nothing
Set liCurrent = liHead

2. While not at the end of the list (while the current pointer isn’t Nothing), does
one of the following:

• If the search item is greater than the stored value, it sets the previous
pointer to refer to the current node and sets the current node to point to
the next node.

• If the search item is less than or equal to the stored value, then you’re
done, and it exits the loop.

Do Until liCurrent Is Nothing
 With liCurrent
 If varItem > .Value Then
 Set liPrevious = liCurrent
 Set liCurrent = .NextItem
 Else
 Exit Do
 End If
 End With
Loop

Chapter 8 • Creating Dynamic Data Structures Using Class Modules458

3. Establishes whether the sought value was actually found.

If Not liCurrent Is Nothing Then
 blnFound = (liCurrent.Value = varItem)
End If

4. Returns the previous and current pointers in ByRef parameters and the
found status as the return value.

➲ Listing 8.9: Use the Search Function to Find a Specific Element in
the List

Function Search(ByVal varItem As Variant, _
 ByRef liCurrent As ListItem, ByRef liPrevious As ListItem) _
 As Boolean
 Dim blnFound As Boolean

 blnFound = False

 Set liPrevious = Nothing
 Set liCurrent = liHead
 Do Until liCurrent Is Nothing
 With liCurrent
 If varItem > .Value Then
 Set liPrevious = liCurrent
 Set liCurrent = .NextItem
 Else
 Exit Do
 End If
 End With
 Loop

 ' You can't compare the value in liCurrent to the sought
 ' value unless liCurrent points to something.
 If Not liCurrent Is Nothing Then
 blnFound = (liCurrent.Value = varItem)
 End If
 Search = blnFound
End Function

Taking the most common case (searching for an item in the middle of an exist-
ing list), the diagrams in Figures 8.16, 8.17, 8.18, and 8.19 demonstrate the steps in

 Creating Ordered Linked Lists 459

the logic of the Search method. In this example, the imaginary code running is
searching for the value 7 in a list that contains the values 3, 5, and 10.

F I G U R E 8 . 1 6
Check to see if it’s time to

stop looping, based on the
current value and the value

to find.

F I G U R E 8 . 1 7
Set the previous pointer to
point to the current node.

F I G U R E 8 . 1 8
Set the current pointer to

point to the next node.

F I G U R E 8 . 1 9
It’s time to stop looping.

The item wasn’t found, so
return False.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules460

What happens in the borderline cases?

What if the list is currently empty? In that case, liCurrent will be Noth-
ing at the beginning of the procedure (because you’ve made it point to the same
thing that liHead points to, which is Nothing). The function will do nothing and
will return False. After you call the function, liCurrent and liPrevious will both
be Nothing.

What if the item to be found is less than anything currently in the
list? In that case, the item should be placed before the item liHead currently
points to. As soon as the code enters the loop, it will find that liCurrent.Value is
greater than varItem and will jump out of the loop. The function will return
False because the value pointed to by liCurrent isn’t the same as the value being
sought. After the function call, liCurrent will refer to the first item in the list, and
liPrevious will be Nothing.

What if the item is greater than anything in the list? In that case, the
code will loop until liCurrent points to what the final node in the list points to
(Nothing), and liPrevious will point to the final node in the list. The function
will return False because liCurrent is Nothing.

Adding an Item to the List

Once you’ve found the right position using the Search method of the List class,
inserting an item is relatively simple. The Add method, shown in Listing 8.10,
takes the new value as a parameter, calls the Search method to find the right posi-
tion in which to insert the new value, and then inserts it. The procedure follows
these steps:

1. Creates a new node for the new item and sets its value to the value passed as
a parameter to the procedure:

Set liNew = New ListItem
liNew.Value = varValue

2. Calls the Search method, which fills in the values of liCurrent and liPrevi-
ous. Disregard the return value when adding an item, as you don’t care
whether the value was already in the list:

Call Search(varValue, liCurrent, liPrevious)

 Creating Ordered Linked Lists 461

3. If inserting an item anywhere but at the head of the list, adjusts pointers to
link in the new item:

Set liNew.NextItem = liPrevious.NextItem
Set liPrevious.NextItem = liNew

4. If inserting an item at the beginning of the list, sets the head pointer to refer
to the new node.

Set liNew.NextItem = liHead
Set liHead = liNew

➲ Listing 8.10: Use the Add Method to Add a New Item to a List

Public Sub Add(varValue As Variant)
 Dim liNew As New ListItem
 Dim liCurrent As ListItem
 Dim liPrevious As ListItem

 Set liNew = New ListItem
 liNew.Value = varValue

 ' Find where to put the new item. This function call
 ' fills in liCurrent and liPrevious.
 Call Search(varValue, liCurrent, liPrevious)

 If Not liPrevious Is Nothing Then
 Set liNew.NextItem = liPrevious.NextItem
 Set liPrevious.NextItem = liNew
 Else
 ' Inserting at the head of the list:
 ' Set the new item to point to what liHead currently
 ' points to (which might just be Nothing). Then
 ' make liHead point to the new item.
 Set liNew.NextItem = liHead
 Set liHead = liNew
 End If
End Sub

Chapter 8 • Creating Dynamic Data Structures Using Class Modules462

Inserting an item at the head of the list is easy. All you need to do is make the
new node’s NextItem pointer refer to the current head of the list and then make
the list head pointer refer to the new node. The diagrams in Figures 8.20, 8.21,
and 8.22 show how you can insert an item at the head of the list. In this example,
you’re attempting to insert a node with the value 3 into a list containing 5, 10,
and 12. Because 3 is less than any item in the list, the code will insert it at the
head of the list.

F I G U R E 8 . 2 0
After Search is called,
liPrevious is Nothing,

indicating an insertion at
the head of the list.

F I G U R E 8 . 2 1
Make the new node’s

NextItem pointer refer to
the item currently referred

to by liHead.

F I G U R E 8 . 2 2
Make the list header point

to the new node.

 Creating Ordered Linked Lists 463

Inserting an item anywhere in the list besides the head works similarly, but the
steps are a bit different. If liPrevious isn’t Nothing after the Add method calls
Search, you must make the new node’s NextItem point to what liPrevious cur-
rently points at and then make whatever liPrevious is pointing at point at liNew
instead. The diagrams in Figures 8.23, 8.24, and 8.25 illustrate an insertion in the
middle (or at the end) of the list. In this series of figures, you’re attempting to add
an item with value 7 to a list containing 5, 10, and 12.

F I G U R E 8 . 2 3
After the Add method

calls Search, liPrevious
isn’t Nothing, indicating

an insertion after the
head of the list.

F I G U R E 8 . 2 4
Make the new item point to

the item after the one
liPrevious points to.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules464

F I G U R E 8 . 2 5
Make the item that

liPrevious points to point to
the new item, linking it into

the list.

Deleting an Item from the List

Again, just as with adding an item, once you’ve found the right position using the
Search method of the List class, deleting an item doesn’t take much code. The
Delete method, shown in Listing 8.11, takes the new value as a parameter; calls the
Search method to find the item to be deleted; and, if it’s there, deletes it. The pro-
cedure follows these steps:

1. Calls the Search method, which fills in the values of liCurrent and liPrevious.
If the function returns False, there’s nothing else to do.

blnFound = Search(varItem, liCurrent, liPrevious)

2. If deleting at the beginning of the list, sets the head pointer to refer to the
node pointed to by the selected node. (It links the head pointer to the current
second node in the list.)

Set liHead = liHead.NextItem

3. If deleting anywhere but at the head of the list, sets the previous item’s
pointer to refer to the node pointed to by the item to be deleted. (That is, it
links around the deleted node.)

Set liPrevious.NextItem = liCurrent.NextItem

4. When liCurrent goes out of scope, VBA destroys the node to be deleted
because no other pointer refers to that instance of the class.

 Creating Ordered Linked Lists 465

➲ Listing 8.11: Use the Delete Method to Delete an Item from a List

Public Function Delete(varItem As Variant) As Boolean
 Dim liCurrent As ListItem
 Dim liPrevious As ListItem
 Dim blnFound As Boolean

 ' Find the item. This function call
 ' fills in liCurrent and liPrevious.
 blnFound = Search(varItem, liCurrent, liPrevious)
 If blnFound Then
 If liPrevious Is Nothing Then
 ' Deleting from the head of the list.
 Set liHead = liHead.NextItem
 Else
 ' Deleting from the middle or end of the list.
 Set liPrevious.NextItem = liCurrent.NextItem
 End If
 End If
 Delete = blnFound
End Function

To delete an item from the head of the list, all you need to do is make the
header’s pointer refer to the second item in the list. The diagrams in Figures 8.26,
8.27, and 8.28 show how you can delete an item at the head of the list.

F I G U R E 8 . 2 6
If the search ends at the

head of the list, liPrevious
will be Nothing.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules466

F I G U R E 8 . 2 7
To delete the first item,

make liHead point to the
second item in the list.

F I G U R E 8 . 2 8
When liCurrent goes out of

scope, VBA destroys the
deleted item.

What about deleting an item other than the first? That’s easy too: Just link
around the item to be deleted. The diagrams in Figures 8.29, 8.30, and 8.31 show
how you can delete an item that’s not the first item in the list. In this case, you’re
attempting to delete the node with value 10 from a list that contains 5, 10, and 12.

F I G U R E 8 . 2 9
The search found the node

to be deleted. (liCurrent
points to it.)

Set IiHead = IiCurrent.NextItem

 Creating Ordered Linked Lists 467

F I G U R E 8 . 3 0
Link around the node to be

deleted.

F I G U R E 8 . 3 1
When liCurrent goes out of

scope, VBA destroys the
deleted item.

Traversing the List

A list wouldn’t do you much good if you couldn’t traverse it, visiting each ele-
ment in turn. The example project includes a DebugList method of the List class.
Calling this method walks the list one item at a time, printing each value in turn to
the Immediate window:

Public Sub DebugList()
 ' Print the list to the Immediate window.
 Dim liCurrent As ListItem
 Set liCurrent = liHead
 Do Until liCurrent Is Nothing
 Debug.Print liCurrent.Value
 Set liCurrent = liCurrent.NextItem
 Loop
End Sub

Chapter 8 • Creating Dynamic Data Structures Using Class Modules468

To do its work, the code in DebugList first sets a pointer to the head of the list.
Then, as long as that pointer isn’t Nothing, the code prints out the current value
and sets the current node pointer to refer to the next item in the list.

Testing It Out

The ListTest module includes a simple test procedure that exercises the methods
in the List class. When you run this procedure, shown in Listing 8.12, the code will
add the 10 items to the list, display the list, delete a few items (including the first
and last item), and then print the list again.

➲ Listing 8.12: Sample Code Demonstrating the Ordered Linked List

Sub TestLists()
 Dim liTest As List
 Set liTest = New List
 With liTest
 .Add 5
 .Add 1
 .Add 6
 .Add 4
 .Add 9
 .Add 8
 .Add 7
 .Add 10
 .Add 2
 .Add 3
 Call .DebugList
 Debug.Print "====="
 .Delete 1
 .Delete 10
 .Delete 3
 .Delete 4
 Call .DebugList
 End With
End Sub

 Creating Binary Trees 469

Why Use a Linked List?

That’s a good question, because the native VBA Collection object provides much
of the same functionality as a linked list, without the effort. Internally, collections
are stored as a complex linked list, with links in both directions (instead of only
one). The data structure also includes pointers that make it possible to traverse the
collection as though it were a binary tree. This way, VBA can traverse the collec-
tion forward and backward, and it can find items quickly. (Binary trees provide
very quick random access to elements in the data structure.)

It’s just this flexibility that makes the overhead involved in using VBA’s collec-
tions onerous. You may find that you need to create a sorted list, but working with
collections is just too slow, and maintaining collections in a sorted order is quite
difficult. In these cases, you may find it more worthwhile to use a linked list, as
demonstrated in the preceding example, instead.

Creating Binary Trees
A simple binary tree, as shown earlier in Figure 8.2, is the most complex data
structure discussed in this chapter. This type of binary tree is made up of nodes
that contain a piece of information and pointers to left and right child nodes. In
many cases, you’ll use binary trees to store data in a sorted manner: As you add a
value, you’ll look at each existing node. If the new value is smaller than the exist-
ing value, look in the left child tree; if it’s greater, look in the right child tree.
Because the process at this point is the same no matter which node you’re cur-
rently at, many programmers use recursive algorithms to work with binary trees.

Why use a binary tree? Besides the fact that finding items in a binary tree is
faster than performing a linear search through a list or an array, if you insert the
items in an ordered fashion, you not only get efficient storage, but you also get
sorting for free—it’s like finding a prize in the bottom of your cereal box! Who
could ask for more?

Traversing Binary Trees
Once you’ve created a binary tree, you can use one of three standard methods for
traversing the tree. All three of the following examples use the tree illustrated in
Figure 8.32. In that figure, the nodes contain letters, but their ordering here
doesn’t mean anything. They’re just labeled to make it easy to refer to them.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules470

F I G U R E 8 . 3 2
Use this binary tree to

demonstrate tree traversal.

Inorder Traversal

To traverse a tree using inorder traversal, you visit each node; but, as you visit
each node, you must first visit the left subtree, then the root node, and then the
right subtree, in that order. When visiting the subtrees, you take the same steps. If
you listed the value each time you visited a root node in the tree shown in Figure
8.32, you’d list the nodes in the following order:

a b c d e f g h i j k

Preorder Traversal

Using preorder traversal, you first visit the root node, then the left subtree, and
then the right subtree. Using this method, you’ll always print out the root value
and then the values of the left and right children. Using the example shown in Fig-
ure 8.32, you’d print the nodes in this order:

f b a d c e i h g k j

Postorder Traversal

Using postorder traversal, you visit the left subtree; then the right subtree; and,
finally, the root node. Using the example shown in Figure 8.32, you’d visit the
nodes in this order:

a c e d b g h j k i f

What’s This Good For?
Binary trees have many analogs in the real world. For example, a binary tree can
represent a pedigree tree for a purebred cat. Each node represents a cat, with the

 Creating Binary Trees 471

left and right links to the cat’s two parents. If a parent is unknown, the link will
point to Nothing. The diagram in Figure 8.33 shows a parentage tree for a hypo-
thetical purebred cat.

F I G U R E 8 . 3 3
A binary tree can represent

parentage (two parents
per node)

A binary tree can also represent an algebraic expression. If you place algebraic
identifiers (constants and variables) in terminal nodes and operators in the inte-
rior nodes, you can represent any algebraic expression in a tree. This makes it pos-
sible to write expression evaluators: By parsing the expression, placing the various
expressions correctly in the tree, and then traversing the tree in the correct order,
you can write a simple expression evaluator. The diagram in Figure 8.34 shows
how you might represent a simple algebraic expression in a binary tree.

F I G U R E 8 . 3 4
A binary tree can represent

an algebraic expression.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules472

Depending on how you traverse the tree, you could visit the nodes in any of the
following manners:

• Inorder traversal:

(a – (b/c) + (d * e))

• Preorder traversal (the order that might be used by a functional calculator):

Add(Subtract(a, Divide(b, c)), Multiply(d, e))

• Postorder traversal (the order used by “reverse Polish” notation calculators
that use a stack for their calculations):

Push a
Push b
Push c
Divide
Subtract
Push d
Push e
Multiply
Add

Implementing a Binary Tree
The following sections discuss in some detail how the code that implements the
binary Tree class operates. You’ll find the code for this section in Tree.cls, Tree-
Item.cls, and TreeTest.bas.

The TreeItem Class

As with the structure items in the previous sections, the TreeItem class is simple. It
includes just the three necessary data items: the value to be stored at the current
node, the pointer to the left child node, and the pointer to the right child node, as
shown here:

Public Value As Variant
Public LeftChild As TreeItem
Public RightChild As TreeItem

Of course, there’s nothing stopping you from storing more information in the
TreeItem class. For example, you may need to write a program that can parse a
text file, create a binary tree containing all the distinct words in the file, and store
each word in its own node, along with a list of all the page numbers on which that

 Adding a New Item 473

word occurred. In this case, you might want to store a pointer to a linked list in the
TreeItem class, along with the text item. That linked list could store the list of all
the page numbers on which the word was found. (See what fun you can have with
complex data structures. Just have a few cups of strong coffee first!)

The Tree Class
As with the previous data structures, the base Tree class stores the bulk of the
code required to make the data structure work. The class contains but a single
data item:

Private tiHead As TreeItem

As with the other data structures, tiHead is an anchor for the entire data structure.
It points to the first item in the binary tree. From there, the items point to other
items.

In addition, the Tree class module contains two module-level variables:

' These private variables are used when
' adding new nodes.
Private mblnAddDupes As Boolean
Private mvarItemToAdd As Variant

The method that adds items to the binary tree uses these module-level variables. If
they weren’t module-level, the code would have to pass them as parameters to the
appropriate methods. What’s wrong with that? Because the Add method is recur-
sive, the procedure might call itself many times. Each call takes up memory that
isn’t released until the entire procedure has completed. If your tree is very deep,
you could eat up a large chunk of stack space adding a new item. To avoid that
issue, the Tree class doesn’t pass these values as parameters; it just makes them
available to all the procedures in the Tree class, no matter where they’re called.

Adding a New Item
When adding items to a binary tree, you may or may not want to add an item if its
value already appears in the data structure. To make it easy to distinguish between
those two cases, the Tree class contains two separate methods: Add and AddUnique,
shown in Listing 8.13. Each of the methods ends up calling the AddNode proce-
dure, shown in Listing 8.14.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules474

➲ Listing 8.13: The Tree Class Provides Two Ways to Add New Items

Public Sub Add(varNewItem As Variant)
 ' Add a new node, allowing duplicates.
 ' Use module variables to place as little as
 ' possible on the stack in recursive procedure calls.
 mblnAddDupes = True
 mvarItemToAdd = varNewItem
 Call AddNode(tiHead)
End Sub

Public Sub AddUnique(varNewItem As Variant)
 ' Add a new node, skipping duplicate values.
 ' Use module variables to place as little as
 ' possible on the stack in recursive procedure calls.
 mblnAddDupes = False
 mvarItemToAdd = varNewItem
 Call AddNode(tiHead)
End Sub

The recursive AddNode procedure adds a new node to the binary tree pointed
to by the TreeItem pointer it receives as a parameter. Once you get past the recur-
sive nature of the procedure, the code is reasonably easy to understand:

• If the TreeItem pointer, ti, is Nothing, it sets the pointer to a new TreeItem
and places the value into that new node:

If ti Is Nothing Then
 Set ti = New TreeItem
 ti.Value = mvarItemToAdd

• If the pointer isn’t Nothing, then:

• If the new value is less than the value in ti, the code calls AddNode
with the left child pointer of the current node:

If mvarItemToAdd < ti.Value Then
 Set ti.LeftChild = AddNode(ti.LeftChild)

• If the new value is greater than the value in ti, the code calls AddNode
with the right child pointer of the current node:

ElseIf mvarItemToAdd > ti.Value Then
 Set ti.RightChild = AddNode(ti.RightChild)

 Adding a New Item 475

• If the new value is equal to the current value, then, if you’ve instructed
the code to add duplicates, the code arbitrarily calls AddNode with the
right child pointer. (You could use the left instead, if you wanted.) If
you don’t want to add duplicates, the procedure just returns.

Else
 ' You're adding a node that already exists.
 ' You could add it to the left or to the right,
 ' but this code arbitrarily adds it to the right.
 If mblnAddDupes Then
 Set ti.RightChild = AddNode(ti.RightChild)
 End If
End If

• Sooner or later, after calling AddNode for each successive child node,
the code will find a pointer that is Nothing, at which point it takes the
action in the first step. Because nothing follows the recursive call to
AddNode in the procedure, after each successive layer has finished
processing, the code just works its way back up the list of calls.

➲ Listing 8.14: The Recursive AddNode Procedure Adds a New Node
to the Tree

Private Function AddNode(ti As TreeItem) As TreeItem
 ' Add a node to the tree pointed to by ti.
 ' Module variables used:
 ' mvarItemToAdd: the value to add to the tree.
 ' mblnAddDupes: Boolean indicating whether to add items
 ' that already exist or to skip them.
 If ti Is Nothing Then
 Set ti = New TreeItem
 ti.Value = mvarItemToAdd
 Else
 If mvarItemToAdd < ti.Value Then
 Set ti.LeftChild = AddNode(ti.LeftChild)
 ElseIf mvarItemToAdd > ti.Value Then
 Set ti.RightChild = AddNode(ti.RightChild)
 Else
 ' You're adding a node that already exists.
 ' You could add it to the left or to the right,
 ' but this code arbitrarily adds it to the right.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules476

 If mblnAddDupes Then
 Set ti.RightChild = AddNode(ti.RightChild)
 End If
 End If
 End If
 Set AddNode = ti
End Function

Adding a New Node: Walking the Code
Suppose you were to try adding a new node to the tree shown in Figure 8.35 with
the value “m”. Table 8.2 outlines the process involved in getting the node added.
(This discussion assumes that the class module’s tiHead member points to the tree
shown in Figure 8.35.) For each step, the table includes, in column 1, the recursion
level—that is, the number of times the procedure has called itself.

F I G U R E 8 . 3 5
Revisiting the alphabetic
tree, attempting to add a

new node

T A B L E 8 . 2 : Recursive Steps to Add “m” to the Sample Tree

Level Action

0 You call the Add method, passing the value “m”.

0 The Add method sets mblnAddDupes to True and sets varNewItem to the value “m”. It
then calls the AddNode method, passing the pointer to the first item in the tree (a node
with the value “f”, in this case). [Call to Level 1]

 Traversing the Tree 477

Traversing the Tree
As mentioned earlier in this discussion, there are three standard methods for tra-
versing a tree: inorder, preorder, and postorder. Because of the recursive nature of
these actions, the code for each is simple; it is shown in Listing 8.15. The class pro-
vides three Public methods (WalkInOrder, WalkPreOrder, WalkPostOrder). Each
of these calls a Private procedure, passing a pointer to the head of the tree as the
only argument. From then on, each of the Private procedures follows the pre-
scribed order in visiting nodes in the tree.

1 AddNode checks to see whether ti is Nothing. It’s not. (It points to the node containing “f”.)

1 Because “m” is greater then “f”, AddNode calls itself, passing the right child pointer of the
node ti currently points to. (That is, it passes a pointer to the node containing “i”.) [Call to
Level 2]

2 AddNode checks to see whether ti is Nothing. It’s not. (It points to the node containing “i”.)

2 Because “m” is greater then “i”, AddNode calls itself, passing the right child pointer of the
node ti currently points to. (That is, it passes a pointer to the node containing “k”.) [Call to
Level 3]

3 AddNode checks to see whether ti is Nothing. It’s not. (It points to the node containing “k”.)

3 Because “m” is greater then “k”, AddNode calls itself, passing the right child pointer of
the node ti currently points to (that is, the right child pointer of the node containing “k”,
which is Nothing). [Call to Level 4]

4 AddNode checks to see whether ti is Nothing. It is, so it creates a new node, sets the
pointer passed to it (the right child of the node containing “k”) to point to the new node,
and returns.

4 There’s nothing else to do, so the code returns. [Return to Level 3]

3 There’s nothing else to do, so the code returns. [Return to Level 2]

2 There’s nothing else to do, so the code returns. [Return to Level 1]

1 The code returns back to the original caller.

T A B L E 8 . 2 : Recursive Steps to Add “m” to the Sample Tree (continued)

Level Action

Chapter 8 • Creating Dynamic Data Structures Using Class Modules478

Of course, in your own applications, you’ll want to do something with each
node besides print its value to the Immediate window. In that case, modify the
three Private procedures to do what you need done with each node of your tree.

➲ Listing 8.15: Because of Recursion, the Code to Traverse the Tree Is
Simple

Public Sub WalkInOrder()
 Call InOrder(tiHead)
End Sub

Public Sub WalkPreOrder()
 Call PreOrder(tiHead)
End Sub

Public Sub WalkPostOrder()
 Call PostOrder(tiHead)
End Sub

Private Sub InOrder(ti As TreeItem)
 If Not ti Is Nothing Then
 Call InOrder(ti.LeftChild)
 Debug.Print ti.Value; " ";
 Call InOrder(ti.RightChild)
 End If
End Sub

Private Sub PreOrder(ti As TreeItem)
 If Not ti Is Nothing Then
 Debug.Print ti.Value; " ";
 Call PreOrder(ti.LeftChild)
 Call PreOrder(ti.RightChild)
 End If
End Sub

Private Sub PostOrder(ti As TreeItem)
 If Not ti Is Nothing Then
 Call PostOrder(ti.LeftChild)
 Call PostOrder(ti.RightChild)
 Debug.Print ti.Value; " ";
 End If
End Sub

 Traversing a Tree: Walking the Code 479

Traversing a Tree: Walking the Code
In order to understand tree traversal, assume you’d like to perform a postorder
traversal of the tree shown in Figure 8.36. Although this example doesn’t include
many nodes, the steps are the same no matter the size of the tree.

F I G U R E 8 . 3 6
Use this small example for
the tree traversal example

To visit each node in the tree using the postorder traversal, follow the steps
listed in Table 8.3. (You’ll want to keep a firm finger on the diagram as you work
your way through these steps.)

T A B L E 8 . 3 : Recursive Steps to Perform a Postorder Traversal

Level Action

0 Call the WalkPostOrder method of the Tree class.

1 The code in WalkPostOrder calls the PostOrder procedure, passing tiHead as a
parameter. [Call to Level 2]

2 PostOrder checks to see whether ti (its parameter) is Nothing. It’s not (it’s a reference
to the node that contains “b”), so it can continue.

2 PostOrder calls itself, passing the left child pointer of the node ti points to. (That is, it
passes a pointer to the node containing “a”.) [Call to Level 3]

3 PostOrder checks to see whether ti (its parameter) is Nothing. It’s not (it’s a reference
to the node that contains “a”), so it can continue.

3 PostOrder calls itself, passing the left child pointer of the node ti points to. (That is, it
passes a pointer that is Nothing.) [Call to Level 4]

4 PostOrder checks to see whether ti (its parameter) is Nothing. It is, so it can’t do
anything and just returns. [Return to Level 3]

3 PostOrder calls itself, passing the right child pointer of the node ti points to. (That is, it
passes a pointer that is Nothing.) [Call to Level 4]

Chapter 8 • Creating Dynamic Data Structures Using Class Modules480

4 PostOrder checks to see whether ti (its parameter) is Nothing. It is, so it can’t do
anything and just returns. [Return to Level 3]

3 PostOrder prints its value (“a”) and then returns. [Return to Level 2]

2 PostOrder calls itself, passing the right child pointer of the node ti points to. (That is, it
passes a pointer to the node containing “d”.) [Call to Level 3]

3 PostOrder checks to see whether ti (its parameter) is Nothing. It’s not (it’s a reference
to the node that contains “d”), so it can continue.

3 PostOrder calls itself, passing the left child pointer of the node ti points to. (That is, it
passes a pointer to the node containing “c”.) [Call to Level 4]

4 PostOrder checks to see whether ti (its parameter) is Nothing. It’s not (it’s a reference
to the node that contains “c”), so it can continue.

4 PostOrder calls itself, passing the left child pointer of the node ti points to. (That is, it
passes a pointer that’s Nothing.) [Call to Level 5]

5 PostOrder checks to see whether ti (its parameter) is Nothing. It is, so it can’t do
anything and just returns. [Return to Level 4]

4 PostOrder calls itself, passing the right child pointer of the node ti points to. (That is, it
passes a pointer that’s Nothing.) [Call to Level 5]

5 PostOrder checks to see whether ti (its parameter) is Nothing. It is, so it can’t do
anything and just returns. [Return to Level 4]

4 PostOrder prints its value (“c”) and then returns. [Return to Level 3]

3 PostOrder calls itself, passing the right child pointer of the node ti points to. (That is, it
passes a pointer to the node containing “e”.) [Call to Level 4]

4 PostOrder checks to see whether ti (its parameter) is Nothing. It’s not (it’s a reference
to the node that contains “e”), so it can continue.

4 PostOrder calls itself, passing the left child pointer of the node ti points to. (That is, it
passes a pointer that’s Nothing.) [Call to Level 5]

5 PostOrder checks to see whether ti (its parameter) is Nothing. It is, so it can’t do
anything and just returns. [Return to Level 4]

4 PostOrder calls itself, passing the right child pointer of the node ti points to. (That is, it
passes a pointer that’s Nothing.) [Call to Level 5]

5 PostOrder checks to see whether ti (its parameter) is Nothing. It is, so it can’t do
anything and just returns. [Return to Level 4]

T A B L E 8 . 3 : Recursive Steps to Perform a Postorder Traversal (continued)

Level Action

 The Sample Project 481

Optimizing the Traversals
If you worked your way through the many steps it took to traverse the simple
tree, you can imagine how much work it takes to perform the operation on a large
tree. You could optimize the code a bit by checking to see whether the child node
is Nothing before you recursively call the procedure. That is, you could modify
InOrder like this:

Private Sub InOrder(ti As TreeItem)
 If Not ti Is Nothing Then
 If Not ti.LeftChild Is Nothing Then
 Call InOrder(ti.LeftChild)
 End If
 Debug.Print ti.Value; " ";
 If Not ti.RightChild Is Nothing Then
 Call InOrder(ti.RightChild)
 End If
 End If
End Sub

This code would execute a tiny bit faster than the original InOrder tree-traversal
procedure (one less procedure call for both children of all the bottom-level nodes),
but it’s a little harder to read.

The Sample Project
The code in the sample module performs some simple tree manipulations: It adds
nodes, walks the tree in all the traversal orders, and deletes some nodes using the
TreeDelete method (not covered in this book, but the code is there in the Tree class
for you to use). Try the TestTrees procedure in the TreeTest module to see how

4 PostOrder prints its value (“e”) and then returns. [Return to Level 3]

3 PostOrder prints its value (“d”) and then returns. [Return to Level 2]

2 PostOrder prints its value (“b”) and then returns to WalkPostOrder. [Return to Level 1,
and exit]

T A B L E 8 . 3 : Recursive Steps to Perform a Postorder Traversal (continued)

Level Action

Chapter 8 • Creating Dynamic Data Structures Using Class Modules482

you might use a binary tree in your applications. The first few tests correspond to
the tree shown in Figure 8.32 earlier in this chapter, and you can use the code in the
project to test your understanding of the different traversal orders.

What Didn’t We Cover?
We actually omitted more about binary trees than we covered here. Binary trees
usually fill multiple chapters in textbooks for courses in standard data structures.
Consider the following:

• Deleting nodes from binary trees is a science unto itself. The sample project
includes code to delete nodes from a tree, but it’s just one of many solutions,
and possibly not the most efficient one.

• Balancing trees is crucial if you want optimized performance. For example,
if you add previously sorted data to a tree, you end up with a degenerate
tree—all the nodes are linked as the right child of the parent. In other words,
you end up with a linked list. Searching through linked lists isn’t particu-
larly efficient, and you lose the benefit of using a binary tree. Courses in data
structures normally cover various methods you can use to keep your trees
balanced (that is, with the left and right subtrees having approximately the
same depth).

• In a course on data structures, you’ll normally find a number of variants
on binary trees (B-trees, for example) that also take into account data
stored on disk.

If you’re interested in finding out more about these variants on binary trees,
find a good textbook that focuses on data structures. Of course, most such text-
books are written for Pascal programmers (most universities use Pascal as a teach-
ing language), so you’ll need to do some conversion. However, it’s not hard once
you’ve got the hang of it.

 Summary 483

Summary
In this chapter, we’ve taken a stab at revisiting Computer Science 201: Data Struc-
tures or a similar university course you might have taken once. Of course, in this
limited space, we can do little more than provide a “proof of concept”—the tech-
nique of using self-referential, abstract data structures in VBA works, and it works
well. Because of the availability of class modules, you can use the techniques pro-
vided here to create hybrid data structures that you just couldn’t manage with
VBA’s arrays and collections. Linked lists of binary trees, collections of linked
lists, linked lists of linked lists—all these, and more, are possible, but we suggest
drawing pictures on paper first!

Note that all the ideas presented in this chapter rely on data in memory. That is,
there’s no concept of persistent storage when working with these data structures.
If you want to store information contained in one of these abstract structures from
one session to the next, you’ll need to design some storage mechanism, whether it
be in the Registry, an INI file, or a database table. In addition, if you run out of
memory, you’ll receive a run-time error when you attempt to use the New key-
word. Obviously, this shouldn’t happen. In production code, you’d want to add
error handling to make sure your application didn’t die under low-memory con-
ditions.

This chapter presented a number of topics to keep in mind when working with
data in memory, including:

• Using class modules to represent elements of linked data structures

• Building stacks, queues, ordered linked lists, and binary trees using class
modules

• Using recursion to work with and traverse binary trees

